The big ideas about the tiniest science

In the almost windowless fabrication laboratory on the University of Washington campus, research engineer Richard Bojko is building structures on the molecular scale that may help revolutionize the gadgets we use in our everyday lives.

Wearing a white protective suit, green gloves and a face mask, he operates a large machine that uses a process called electron beam lithography to create a pattern for a microchip. More at Alaska Airlines magazine.

Digging – the best way to learn science

I remember meeting Maureen Munn, PhD, for the first time, almost 20 years ago. As neighbors and mothers, we often took our six children to the beach together. Her passionate belief in letting children dig and experiment to find out about the world was obvious. Let’s just say – they got dirty. Really dirty.

Now that she has won a prize from Science magazine for designing a curriculum around digital digging in a database, I am grateful her methods brought national praise. Munn has been remarkable in discovering better and better ways to help students dig, and serving the cause of science literacy for a long time from her position as director of education outreach at the University of Washington Department of Genome Sciences.

As a scientist, she has championed the hands-on explorations that are also labeled “inquiry science.” On July 25, she and her team of collaborators were honored with an award for their curriculum about smoking behavior that lets students “dig” through survey data about smoking behavior.

She explained to the National Science Foundation that her curriculum idea grew out of genetic sequencing she did with high-school students focused on finding variation in one of many genes that might be associated with nicotine addiction. Teachers and students told her they wondered about how that might relate to behavior and addiction.

“They were very interested in learning about those topics because they did affect them,” Munn said, in an interview with the NSF.

Over a period of time, she and colleagues collected some survey data from about 300 adults who smoked regularly and others who tried it and quit. They also collected blood samples from the survey participants, purified their DNA, and typed their genomes at three regions known to be associated with smoking.  The resulting database of data became the rich material in which new students could “dig” for answers. Was one thing caused by another or just correlated? How significant were comparisons?  What numbers could they trust?

Students use the curriculum “Exploring Databases” to learn the fundamentals of statistics and the limitations of asking people survey questions.

“Part of their learning experience is recognizing the shortcomings of the study,” said Munn. “The important thing is that students are able to propose their hypothesis, to be able to say whether the data supports it and to defend their results — or to reconsider them.”

When I called her to offer congratulations, Munn said she hopes teachers across the country use the free materials at the project website. “If we have done a good job, new teachers will be able to self-learn how to use the curriculum at our website,” Munn explained. Of course, the grant that funded “Exploring Databases” expires in less than 60 days. She hopes the publicity from the award may keep teachers visiting the curriculum website, even though no new work will be done on the site itself.

“Whether using a micropipette or a database, students develop a better understanding of science if they experience the practices of scientists,” she said. That includes testing ideas, trashing what doesn’t work and finding the evidence to defend a claim.

Don’t worry too much. Munn is busy on a new project about nematodes and interactions of their genomes with the environment.